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1. Introduction

In recent years it has become clear that neutrinos have very small masses and that they

mix. The origin of these masses is still an open question. The see-saw mechanism is

probably the most elegant explanation for small neutrino masses. The idea is to add heavy

Majorana right handed (RH) neutrinos to the theory. These added particles give very small

Majorana masses to the active, Standard Model (SM) neutrinos. The see-saw mechanism

has one more virtue: it provides an elegant mechanism to explain the observed baryon

asymmetry in the universe. The idea of this mechanism, called Leptogenesis (LG) [1],

is that the heavy RH neutrinos that drive the see-saw also generate lepton asymmetry

when they decay. Part of this lepton asymmetry is transformed into the observed baryon

asymmetry of the universe (for a review see [2]).

While the see-saw mechanism is very simple and successful, it is not the only way to

explain the observed small neutrino masses. Another idea for getting light neutrinos that

has not been widely discussed is that of composite RH neutrinos [3, 4]. The basic idea

is that there exists a new sector with strong dynamics at a scale Λ. The confinement in

this sector leaves some chiral symmetries exact and produces massless composite fermions.
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The only interaction between the preons of the new sector and the SM sector is via heavy

messengers with large masses of order M . Then, the Yukawa coupling between the LH and

RH neutrinos is suppressed by powers of the small factor Λ/M . This can give a natural

explanation for small Dirac or Majorana neutrino masses.

In this article we further investigate the composite RH neutrino idea. First, we find

UV completions for models that give Dirac or Majorana neutrino masses. We then study

how these full models can give LG. We find that it exhibits interesting LG possibilities. In

particular, it can have see-saw like LG and a low mass scale Dirac LG.

In the next section, we give a brief review of the composite RH neutrino idea of

ref. [3]. We find UV complete theories in section III for both Dirac and Majorana neutrinos

where the new particle content is given, and the experimental constraints are discussed.

In section IV, we study LG possibilities in the model. When the temperature T is below

the confinement scale, T ≪ Λ, and the RH neutrinos are heavy, the composite structure

of the RH neutrinos cannot be probed and standard LG become possible (IV.A). When

T ∼M ≫ Λ, the preons are asymptotically free and standard LG cannot work. In the case

of Dirac neutrinos, the decay of heavy messengers gives a realization of a low energy Dirac

LG (IV.B). In section V we conclude. A detailed calculation of the effective couplings is

given in appendix A. The experimental bounds on the masses and couplings of the new

fields arising from lepton flavor violating processes are given in appendices B and C.

2. Composite right-handed neutrino

We first review the idea of composite right-handed neutrinos [3]. Consider a new strong

sector such that all the new fields are SM singlets. Like QCD, where the interaction

becomes strong at a scale ΛQCD, the new sector becomes strong at a new scale Λ. Unlike

QCD, however, we assume that the confinement in the new sector keeps some of the chiral

symmetries unbroken. In that case, massless composite fermions are generated since they

are required for anomaly matching of the unbroken chiral symmetries.

The view point in [3] is that of an effective field theory where the model is a low

energy description of a more fundamental theory. In that case one needs to include non-

normalizable operators that are suppressed by some high energy scale M . We can think

about such operators as emerging from integrating out heavy fields. That is, it is assumed

that the “preons” in the new sector interact with the SM fields through “messengers.” The

messengers are fields that are charged under both the SM and the preon sector, and are

assumed to be very heavy, with the mass scale M ≫ Λ. After confining dynamics occur,

the couplings between the composite fermions and the SM fields are naturally suppressed

by powers of the small ratio Λ/M . In particular, the fact that the coupling between the

composite and SM fermions are suppressed makes the composite fermions candidates to be

light RH neutrinos.

The work of ref. [5] is a well known example of a model and strong dynamics with

unbroken chiral symmetries. The model is based on an SU(n + 4)C gauge group with a

single antisymmetric tensor A and n antifundamentals ψf (with f = 1 . . . n). Below the
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confinement scale the theory is described by n(n + 1)/2 massless composite “baryons”

B̂ff ′ = B̂f ′f = ψfAψf ′ . These baryons are identified with the RH neutrinos.

In this work, we focus on the n = 2 case, that is a model with a gauge group SU(6)C .

This model has three massless baryons that can give mass to the three SM neutrinos. These

baryons are connected to the SM neutrinos through higher dimension operators suppressed

by the high mass scale M . The lowest dimension operator of interest is

λff
′,i

(ψTf A
∗ψf ′)L

†
iH̃

M3
≡ λff

′,iǫ3Bff ′L
†
i H̃, (2.1)

where i = 1, 2, 3 runs over the three SM generations and we define

ǫ ≡ Λ

M
, Bff ′ ≡

ψTf A
∗ψf ′

Λ3
, H̃ ≡ iσ2H∗, (2.2)

such that Bff ′ are the canonically normalized baryon fields. If lepton number is a good

symmetry of the model, the term in (2.1) generates Dirac masses to the SM neutrinos

mν = λǫ3v, (2.3)

where v is the Higgs vev and flavor indices are suppressed.

We can also include lepton number violating terms in the theory. Then we have the

well known see-saw term

yij
L̄iL̄jHH

M
. (2.4)

In addition, there are new terms involving the composite fermions

hff
′,gg′ (ψfAψf ′)(ψgAψg′)

M5
= hff

′,gg′Mǫ6Bff ′Bgg′ . (2.5)

The neutrino mass matrix is now a 6 × 6 matrix that in the (Lα, Bff ′) basis is given by

[

yv2/M λǫ3v

λǫ3v hǫ6M

]

, (2.6)

where flavor indices are implicit. Diagonalizing the matrix and assuming that all the

dimensionless couplings are order one we get

mν ∼
v2

M
, mN ∼ ǫ6M, θLR ∼ min

(√

mν

mN
,

√

mN

mν

)

. (2.7)

mν and mN are, respectively, the LH and RH neutrino masses, and θLR are the mixing

angles between the LH and RH neutrinos.

We learn that composite RH neutrinos can naturally give small neutrino masses. They

can be Dirac masses, eq. (2.3), or Majorana masses, eq. (2.7).
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SU(6)C SU(2)L U(1)Y Q spin L Qps SU(2)ψ

iL
α
L 1 2 −1

2 0, −1 1
2 1 0 1

iER 1 1 −1 −1 1
2 −1 0 1

Hα 1 2 1
2 1, 0 0 0 0 1

gΩ
α
ab 15 2 −1

2 0, −1 0 0 2 1

fψa 6 1 0 0 1
2 0 1 2

Aab 15 1 0 0 1
2 −1 2 1

Φab 15 1 0 0 0 0 2 1

kN 189 ; 1 1 0 0 1
2 break 0 1

Table 1: The fermions and scalars of the SU(6)C model. We divide the particles into four groups.

From top to bottom: the SM fields, the messenger, the preons and the optional lepton number

violating Majorana fermion.

3. The UV complete theory

In [3] a low energy effective theory approach was used. In this section, we give UV comple-

tions of the models studied in [3]. In III.A, we present the particle content. In III.B, the

interactions relating to the new fields are listed and the number of physical parameters is

discussed. In III.C, we obtain bounds on the parameters from µ→ eγ and muon-conversion

experiments. In appendix. A, we show how the coupling of eqs. (2.1) and (2.5) are obtained

by integrating out the heavy fields of the UV complete theory.

3.1 Particle content

We consider the case of an SU(6)C gauge symmetry in the preon sector. As we mention

before, this gives three composite neutrinos. The generalization for models with a larger

symmetry is straightforward. The minimum particle content of this model is listed in

table 1. In the table we identify representations by their dimension. In the SM sector,

iL
α
L and Hα are lepton and Higgs doublets carrying SU(2)L index α = 1, 2 while iER is an

SU(2)L singlet. L and E carry generation index i = 1, 2, 3.

There are two types of fermions in the preon sector. The first fermion, fψa, is a

fundamental under SU(6)C that carries a flavor index f = 1, 2 and SU(6)C index, a =

1, 2, . . . , 6. The other fermion, Aab, is a second rank antisymmetric tensor, that is it

belongs to the (0, 1, 0, 0, 0) representation of SU(6). Composite fermions are made of these

two types of fundamental fermions.

Aside from the fermions we also need scalars that connect the fermions to the SM

fields. One scalar, gΩ
α
ab, is a heavy messenger, as it is charged under both the SM and

preon gauge groups. It carries a generation index g = 1, 2 (as discuss below, this is

necessary for LG) and transforms as a second rank antisymmetric tensor under SU(6)C
and as a fundamental under SU(2)L. The other heavy scalar, Φab, used for connecting

two ψ’s together, transforms as a second rank antisymmetric tensor under SU(6)C . The

mass scale of both heavy scalars is M , which is assumed to be much larger than the preon

confinement scale Λ.
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Lastly, in models with lepton number violation we need one more field that breaks

lepton number. This field, kN , is a SM singlet, and can be either a singlet or a 189 of

SU(6)C . [The 189 of SU(6) is (0, 1, 0, 1, 0).] Here k = 1, 2 is the generation index, which is

needed, as discuss below, for LG.

There are three accidental symmetries for this model, U(1)L, U(1)ps, and SU(2)ψ .

U(1)L is the SM lepton number L. It is exact in the model without N , but broken when

the Majorana fieldN is included. U(1)ps, where “ps” stands for “preon sector”, corresponds

to a preon sector charge, Qps. Only preons and heavy scalars carry such charge. SU(2)ψ
is a symmetry due to the antisymmetry of the ψ field and correspond to flavor rotation

between the two flavors of ψ. Only ψ is charged under this symmetry.

3.2 Interactions

We move to discuss the renormalizable interaction terms of the model. The SM Yukawa

interactions

Y e
ijL̄

i
LHE

j
R + h.c., i, j = 1, 2, 3, (3.1)

are well known, and we do not discuss them any further. We only recall that the Yukawa

couplings, Y e
ij , contain 9 complex parameters.

There are mass terms for the new scalar fields

M2
Ωgg′Ω

†
gΩg′ +M2

ΦΦ†Φ. (3.2)

Here M2
Φ is a dimensionfull coupling with 1 real parameter, and M2

Ω is a 2 × 2 hermitian

matrix with 3 real and 1 imaginary parameters. We assume that all new masses are of the

same order, M2
Ω ∼M2

Φ ∼M2.

There are also interaction terms that involve the new fields. In both the L-conserving

and L-violating models, the following terms are the most relevant to our study

Y L
giAΩ†

gLi + h.c., (3.3)

M̃gH̃
†Φ†Ωg + h.c., (3.4)

Y A
ff ′ψfΦ

†ψf ′ + h.c. . (3.5)

These couplings generate the effective Yukawa interaction of (2.1) via the diagram in fig-

ure 1a (see appendix A). The coupling Y L
gi is a general 2 × 3 matrix containing 6 real and

6 imaginary parameters. M̃g corresponds to two dimension full complex coefficients with

g = 1, 2. We assume that each of the elements of M̃g is of order M . The coupling Y A
ff ′ is

a 2 × 2 antisymmetric matrix with 1 complex parameter (see appendix A).

In the L-violating case we include the N field. The relevant couplings include a Majo-

rana mass term

MNkk′NkNk′ , (3.6)

where we assume MN ∼M , and interaction terms

Y N
k Φ†ANk + h.c. . (3.7)
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L

H
Φ

ψ

ψ

A

Ω

(a)

A A

ψ

ψ

ψ

ψ

Φ Φ

N

(b)

Figure 1: The diagrams that generate the effective couplings of the model. (a) generates the

Yukawa coupling of eq. (2.1) and (b) the L-violating term of eq. (2.5).

The mass term (3.6) and the interaction term (3.7) are included for the two possible

representations of N , the singlet and the 189. These two terms generate the L-violating

term of eq. (2.5) through the diagram in figure 1b. If N is a singlet under all the gauge

symmetries, an additional coupling

yNikH
†LiNk + h.c., (3.8)

exists. This term is the usual Yukawa coupling in the see-saw mechanism. Together with

the mass term of (3.6) it generates the usual see-saw term for the light neutrinos.

Aside from the couplings relating to neutrino masses and LG, there are couplings that

connect the new scalars to the SM Higgs field

λ
Ω(1)
gg′ H

†ΩgH
†Ωg′ + h.c., λ

Ω(2)
gg′ H

†HΩ†
gΩg′ , λΦH†HΦ†Φ. (3.9)

These couplings result in having a Higgs mass much above the weak scale unless they are

fine-tuned. This is the usual fine tuning problem of the SM. In this work we do not try

to solve this problem, we just assume that there is a solution. Thus, in the following we

assume that the couplings in (3.9) vanish.

Next we count the number of physical parameters in the various models. In particular,

it is important to show that there are CP violating phases in the couplings that we used

for LG. We start with the L-conserving model. The parameters of the model discussed

above introduced 22 real and 19 imaginary parameters. The counting is summarized in

table 2. Not all of these parameters, however, are physical. In order to count the number

of physics parameters we need to see how many global symmetries are broken by the new

terms. The global symmetry breaking pattern is

U(3)L × U(3)E × U(1)A × U(2)ψ × U(2)Ω × U(1)Φ → U(1)L × U(1)ps × SU(2)ψ .

Thus, we can eliminate 7 real and 16 imaginary parameters corresponding to the broken

generators. This leave us with 15 real and 3 imaginary parameters. It is convenient to

work in a basis where all mass parameters are real and diagonal. In that basis the three

CPV phases are in Y L. Note that if we had only one generation for Ω there would be no

CPV in the model.
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Symbol Number of Number of

parameters (R+I) Physical parameters (R+I)

M2
Ω 3+1 2+0

M2
Φ 1+0 1+0

M̃ 2+2 2+0

Y e 9+9 3+0

Y L 6+6 6+3

Y A 1+1 1+0

MN 3+3 2+0

Y N 2+2 2+1

yN 6+6 6+6

Table 2: Parameter counting. We divide the couplings into three groups: For the L-conserving

model, we only have the couplings in the first group. For the L-violating model, if N is a 189, we

have the couplings in both the first and the second group. When N is a singlet, we have all the

three groups. For each coupling we list the number of parameter as well as the number of parameter

in our “physical” basis choice. We list separately the number of real and imaginary parameters.

When including the N field there are more parameters and two more broken global

symmetries, U(2)N and U(1)L. The global symmetry breaking pattern becomes

U(3)L × U(3)E × U(1)A × U(2)ψ × U(2)Ω × U(1)Φ × U(2)N → U(1)ps × SU(2)ψ .

We then eliminate 8 real and 20 imaginary parameters corresponding to the broken gen-

erators. When N is a 189, there are 19 real and 4 imaginary parameters in the theory.

When N is singlet, the model has 25 real and 10 imaginary parameters.

3.3 Experimental bounds

One potential issue with the full model is the contributions of the heavy particles to rare

processes. The effect of new SM singlets is quite small as they do not couple to SM fields.

The messenger, however, can have significant effect as it charged under the SM gauge

group. Here we study the most significant bounds. They arise from µ→ eγ, muon electron

conversion in nuclei, and cosmology.

Starting with µ → eγ, see figure 3. In the appendix we calculate the decay rate,

eq. (B.12),

Br(µ→ γe) =
α|Y L|4

3072πG2
FM

4
(3.10)

Comparing it to the experimental bound [6]

Br(µ→ eX) < 1.2 × 10−11, (3.11)

we obtain a lower bound

M > 10|Y L| TeV. (3.12)
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For coherent muon electron conversion in nuclei (figure 4), the theoretical expression

is estimated in the appendix, eq. (C.6),

Br(µ→ e, T i) ≡ wconv

wcap
≈ 108|Y L|4

(mµ

M

)4
. (3.13)

The experimental bound on the branching ratio is [7]

Br(µ→ e) < 1.7 × 10−12. (3.14)

Comparing the theoretical prediction with the experimental data we get a bound on M

M > 10|Y L| TeV. (3.15)

which is the same as the one we get from µ→ eγ, (3.12).

Aside from the constraints coming from particle physics, constraints from big-bang

nucleosynthesis (BBN) can be strong when the RH neutrinos have Dirac masses. The

reason for this is that the three extra light modes can be populated before BBN. Then the

energy density, which depends on the number of relativistic particles, would be different

from the SM one. This difference affects the observed ratio of primordial elements.

The number of light degrees of freedom is parameterized by the number of neutrinos.

The most stringent bound coming from BBN and CMB data implies Nν ≤ 3.3 at 95%

CL [8], that is, the effective contribution of the RH neutrinos can account for as much as

0.3 of one active neutrino.

This bound rules out any model where the RH neutrinos are populated at the same

temperature as the SM ones. Yet, if the temperature of the RH sector is lower, the model

is viable. The point is that the contribution to the energy density scales like T 4 (where

T is the temperature). Explicitly, the energy density of the SM sector (with temperature

TSM) and the three light composite neutrinos (with temperature TCN) is given by [9]

ρ =
π2

30
( g∗T

4
SM +

7

8
× 3 × 2 × T 4

CN ), (3.16)

where g∗ ≃ 11 is the effective number of degrees of freedom in the SM sector (including

three massless LH neutrinos). Requiring that the RH neutrinos contribute less than 0.3

active neutrinos is equivalent to the condition

3T 4
CN ∼< 0.3T 4

SM ⇒ TCN ∼< 0.5TSM. (3.17)

We learn that we need the composite neutrino temperature to be less than about half of

the SM one in order to satisfy the energy density constraint from BBN.

Next we compare the temperature of the two sectors. The preon confinement scale, Λ,

is larger than the EW scale. Therefore, the light composite neutrinos decouple from the

thermal bath at T ∼ Λ which is before the EW phase transitions. Thus, the temperature

of the composite neutrinos is different than that of the active one. The temperatures ratio

is inversely proportional to the ratio of scale factors, TCN = (ai/af )Λ. The temperature

in the SM sector, however, is not just inversely proportional to the scale factor, but is

– 8 –
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higher than this due to the decrease in the number of degrees of freedom. The total

number of degrees of freedom in SM sector is g∗ ≃ 106 when T = Λ but becomes g∗ ≃ 11

when T = TSM just before BBN. Making the conservative assumption that the EW phase

transition is of second order and thus gives no latent heat, the equality between the initial

and the final entropies in SM sector gives

106 × a3
i × Λ3 = 11 × a3

f × T 3
SM ⇒ TCN ≃ 0.47TSM, (3.18)

which satisfies the BBN bound (3.17). When the SM is extended to include extra fields

(like in the MSSM) or when the EW phase transition is first order, TCN/TSM is even smaller

and thus also satisfies the BBN bound.

4. Leptogenesis

As has been discussed, one phenomenological use of the composite model is the realization

of leptogenesis. In this section we discuss two LG possibilities corresponding to different

reheating temperatures and particle contents. First, we study a model with L-violating

interactions and low reheating temperature, T , that is, T ≪ Λ. In this model, standard

LG from decays of the heavy composite RH neutrinos is possible. Second, we study a

Lepton number conserving model with T ≫ Λ. We can have a realization of Dirac type

LG where the new fields can be as light as 10 TeV.

4.1 Standard leptogenesis

Consider the L-violating model with T ≪ Λ. In this case, the preon sector is in its confining

phase, and the effects of the interior structure of the RH neutrinos cannot be probed. The

model looks like the standard see-saw model, and thus we should check if we can get

standard LG in that case.

Using eq. (2.7), assuming that all dimensionless couplings are O(1), and setting the

active neutrino mass to mν ∼ 10−2 eV, the composite RH neutrino mass is of order

mN ∼ 1015ǫ6 GeV. (4.1)

We define the standard two parameters [2]

m̃ ≡ 8π
v2

m2
N

ΓD, m∗ ≡ 8π
v2

m2
N

H
∣

∣

∣

T=mN

. (4.2)

They represent the particle decay and the universe expansion rate relating to LG. The

baryon asymmetry is estimated [2]

Y∆B ≃ 135ζ(3)

4π4g∗

∑

α

εLαα × ηα × C ≃ 10−3 × η × εL, (4.3)

where α is a flavor index, g∗ ≃ 106 as in the SM, and ηα is the efficiency factor of LG under

various washout effects. In the weak washout regime (m̃ ≪ m∗), we have η ≃ m̃2/m2
∗, while

in the strong washout regime (m̃ ≫ m∗) we have η ≃ m∗/m̃. We use here the SM value,

– 9 –
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C ≃ 12/37, to characterize the sphaleron effects that convert L-number into B-number.

For the sake of simplicity, we ignore flavor effects, as they are not changing the order of

magnitude of our results. (For a review of flavor effects see, for example, [2].)

Similar to standard LG, the asymmetry εL in this case (with Yukawa coupling λǫ3) is

given by [10] (with yn ≡M2
β/M

2
α)

εLαα ≡ Γ(Nα → LH) − Γ(Nα → L̄H∗)

Γ(Nα → LH) + Γ(Nα → L̄H∗)

=
∑

α6=β

Im[(λλ†)2αβ ]ǫ
6

8π(λλ†)αα

√
yn

[

1 − (1 + yn) ln

(

1 + yn
yn

)]

∼ 1

8π
λ2ǫ6. (4.4)

Note that we explicitly kept the O(1) coupling λ in order to demonstrate where the CP

violating phase arises. Using the neutrino mass condition, (4.1), the RH neutrino decay

rate can be written as

Γ ≃ ǫ6

8π
mN ∼ 10−13 m

2
N

TeV
. (4.5)

The expansion rate at the time of decay is given by [9]

H|T=mN
≃ 10−15 m

2
N

TeV
. (4.6)

Since Γ ≫ H, the decay is in the strong washout regime. The baryon asymmetry

is therefore

Y∆B ≃ 10−3εL

(

H|T=mN

Γ

)

∼ 10−5ǫ6. (4.7)

Comparing to the observed value, Y∆B ≃ 10−10, we find that the following range of pa-

rameters lead to successful leptogenesis:

mN ∼ 1010 GeV, ǫ ∼ 10−1, M ∼ 1016 GeV, Λ ∼ 1015 GeV. (4.8)

These parameters correspond to a high energy LG scenario which gives the observed values

for mν and Y∆B.

4.2 Dirac-type leptogenesis

Next we move to study the T ≫ Λ case. Then the preons are asymptotically free and we

perform all the calculations at the preon level. Since we care only about rough estimates

we do not include SU(6)C radiative corrections. Here we study the L-conserving model.

We get L-number conservation by not including the heavy Majorana fermion N . Below we

show that in that case the decay of the heavy messenger Ω gives a realization of Dirac-type

LG [11, 12].

The idea is as follows. When T ∼ M , the decay of Ω and Ω̄ gives different L and

L̄ in the final state. Yet, the decays also generate exactly the same difference between

the number of A and Ā. Since L and A carry opposite lepton numbers, the total lepton

number is zero. Yet, each sector (L and A) carry finite and opposite lepton number. Since

the equilibrating rate is smaller than the expansion rate, the L-number is preserved in each

– 10 –
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Ωj

A

Li

A

Ωj

Li

Ωk

H

Φ

Figure 2: The Ω decay process that gives the L-asymmetry.

sector. When the EW phase transition occurs, sphaleron processes only affects L and L̄,

but not A and Ā. Thus, the sphalerons convert part of the L-number stored in the leptons

into B-number. We can end up with positive B-number and negative L-number in SM

sector. Since we only observe the B-number of the universe this mechanism can be valid.

Specifically we consider the decay Ω → LA (figure 2). The asymmetry between this

decay and its conjugate process comes from the interference between the tree level and the

one loop diagrams. It is given by

ǫΩj
≡ Γ(Ω̄j → ĀL̄) − Γ(Ωj → AL)

Γ(Ω̄j → ĀL̄) + Γ(Ωj → AL)

=
1

8π

M2
j −M2

Φ

M2
j −M2

k

(

M̃jM̃k

M2
j

)

Im((Y L†Y L)jk)

(Y L†Y L)jj
∼ r2

8π
, r ≡ M̃

M
. (4.9)

Here j, k = 1, 2 and j 6= k. Mj , Mk, MΦ are the masses of Ωi, Ωj, Φ, and we assume

Mj ∼ Mk ∼ MΦ with MΦ < Mj such that Φ can be on-shell in the loop. Following the

convention in table 2, we take the trilinear coupling, M̃ , to be real. The CP phase that

contributes to the asymmetry is in Y L. In half of the parameter space we end up with

negative L-number in the SM sector and positive L-number in the preon sector.

The natural scale of M̃ is M̃ ∼M , that is r ∼ 1. (Yet, in the following we investigate

the allowed parameter space letting the ratio r to vary.) The main result from eq. (4.9) is

that we can get very large lepton asymmetry. Thus, we have to check if washout effects

can reduce the asymmetry to the observed level.

There are two kinds of washout processes: inverse decays and scattering that equili-

brates the L-number. Here, we would like to demonstrate that we can get Dirac-LG. Thus,

we only try to find some parts of the parameters space that can produce the observed

value of the asymmetry. We concentrate on the part of the parameter space where the

equilibrating scattering is negligible, that is, where the equilibrating rate between positive

and negative L-numbers is slower than the expansion of the universe.

The parameter space where equilibrating scattering is negligible can be found as fol-

lows. First, when T < M the only equilibrating process in our case is ĀL̄→ Hψ̄ψ̄, coming

– 11 –
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from the diagram in figure 1. Its interaction rate can be estimated as

Req|T ∼ |Y A|2|Y L|2
(

M̃

M

)2
T 7

M6
. (4.10)

Here the M−8 factor comes from the masses of virtual Ω and Φ. Unlike the original Dirac

LG scenario [11] where Req ∝ T , in our case Req drops much faster than H, that is,

Req ∝ T 2. Thus, if the equilibrating is slower than the expansion just when Ω begins to

decay, that is,

Req|T=M ∼ |Y L|2|Y A|2r2M < H|T=M ∼ 10−15 M
2

TeV
, (4.11)

then the equilibrating rate after this is always smaller than the expansion rate. In that

case scattering is very rare and can be neglected. That is, by choosing the parameter space

satisfying eq. (4.11), we only need to include the inverse decay for washout effect.

Within this range of parameters we only need to study the effect of inverse decays.

The L-asymmetry is given in eq. (4.9). We see that for r > 10−3, the inverse decay must

be significant in order to reduce the asymmetry into the observed value, Y∆B ∼ 10−10.

When including the efficiency factor given by the strong inverse decay, eq. (4.3), we have

the asymmetry

Y∆B,Ω ≃ 10−4 × r2 ×
(

H|T=M

ΓΩ

)

∼ 10−18 × r2 × |Y L|−2 M

TeV
. (4.12)

If the inverse decay lowers the baryon asymmetry to the observed value, Y∆B ∼ 10−10, the

following condition should be satisfied

r2|Y L|−2 M

TeV
∼ 108. (4.13)

We are ready to find a region of the parameter space that gives successful Dirac-LG.

Besides the two constraints eqs. (4.11) and (4.13) we also have a constraint from the Dirac

neutrino mass

mν =

(

M̃

M

)

|Y L||Y A|ǫ3v ∼ 10−2 eV. (4.14)

We also require ǫ ≡ (Λ/M) < 10−2, in order justify integrating out the heavy scalars.

Then, eq. (4.14) gives

r|Y L||Y A| > 10−7. (4.15)

Last, we use |Y L|, |Y A| ∼< 1 in order for perturbation theory to work. Then, combining

eqs. (4.11), (4.13) and (4.15) we find a representative region in the parameter space that

gives a successful Dirac-type LG:

10−3r < |Y L| < 1, |Y A| < 10−4r−2, |Y A| < 1, M > 10TeV,

10−7r−4TeV < M < 107r−2 TeV, ǫ < 10−2. (4.16)

– 12 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
6

As an example, when r = 1, the following parameters give a successful Dirac-LG with

strong washout effect

|M̃ | = M M = 10TeV |Y L| = 10−3 |Y A| = 10−4 ǫ = 10−2. (4.17)

When r = 10−3, the following parameters give a successful Dirac-LG with weak

washout effect

|M̃ | = 10−3M M = 108 TeV |Y L| = 10−3 |Y A| = 10−1 ǫ = 10−2. (4.18)

We note that when r > 10−2, the Ω mass can be as low as 10TeV, which is, much

lighter than the Majorana neutrino mass in the standard LG. The reason that we can

get low energy LG is that the Dirac neutrino mass is not directly related to the lepton

asymmetry. That is, in the composite model the neutrino mass is suppressed by a factor

(Λ/M)3. The lepton asymmetry, however, is proportional to r, which is not a very small

parameter. In standard LG, on the contrary, both the neutrino mass and the lepton

asymmetry are proportional to the Yukawa couplings and thus they cannot be too small.

5. Discussions and conclusions

We investigated models of composite RH neutrinos. First we find several UV completions

of the models. These full models are not expected to be unique. They serve as an example

that such models can be constructed. Then we moved on to study leptogenesis in these

models. We find that such models can naturally give leptogenesis. In particular, we

discussed two possibilities corresponding to different temperatures and particle contents.

In the lepton number violating model we find that they can give standard LG from RH

neutrino decay. In models with lepton number conservation, we find that they can provide

a realization of low energy Dirac LG. We conclude that the idea of composite RH neutrino

is phenomenologically interesting: it naturally gives small neutrino masses and successful

leptogenesis.
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A. Matching the UV theory to the effective theory

In this appendix, we obtain the effective Yukawa and L-violating couplings in eqs. (2.1)

and (2.5) by integrating out the heavy fields in eqs. (3.3)–(3.8). This gives the relations

between the effective couplings λ, h and those of the full theory.
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We start from rewriting eqs. (3.3)–(3.8) keeping all the indices explicitly

Y L
giAabmσ

2
mnΩ

baα
g Liαn + h.c., (A.1)

M̃gH̃
αΦabΩgbaα + h.c., (A.2)

Y A
ff ′ψfamσ

2
mnΦ

abψf ′bn + h.c., (A.3)

Y N
k ǫabopqrǫ

opqrstǫuvwxyzΦabAuvmσ
2
mnNstwxyz,kn + h.c., (A.4)

yNikH
αLαiNk + h.c. (A.5)

where here the upper indices represent the hermitian conjugate of the fields. As we can

see in eq. (A.3), the antisymmetry in the spinor and the SU(6)C indices require Y A
ff ′ to be

antisymmetric. The indices here are quite cumbersome, and we write them only when it

is necessary in the following calculation.

To obtain the effective Yukawa coupling as an (ψAψLH̃) vertex, we need to integrate

out the heavy Ω and Φ fields in figure 1a. The Ω and Φ related couplings, including their

mass terms and three vertices in the diagram, is

−M2Ω†Ω −M2Φ†Φ + Y AψΦ†ψ + Y L†L†ΩA† + M̃ †Ω†ΦH̃ + h.c.. (A.6)

After integrating Ω and Φ out, and using the convention |M̃ | = rM , we obtain

1

M3
[Y L†rY A(L†A†H̃)(ψTψ) + h.c.] (A.7)

Writing the indices explicitly, we can rearrange the fields into a more transparent form for

composite neutrino

Y L†
i rY Aff ′

M3
(L∗α

imσ
2
mnA

∗ab
n H̃α)(ψfasσ

2
stψf ′bt) + h.c.

=
Y L†
i rY Aff ′

M3
(ψfasσ

2
stA

∗ab
m ψf ′bt)σ

2
mnL

∗α
in H̃α + h.c.

≡ λff
′,i

(ψTf A
∗ψf ′)L

†
i H̃

M3
+ h.c., (A.8)

where

λff
′,i = Y L†

i rY A
ff ′ ⇒ λ ∼ r|Y L||Y A|. (A.9)

Note that the second equality implies that when interchanging ff ′, the antisymmetry of

Aab and Y A
ff ′ makes the whole RH neutrino part invariant. This gives the correct form for

Bff ′ , the massless composite neutrinos.

For the L-violating coupling, eq. (2.5), we need to include the heavy Majorana fermion

N . The related couplings in figure 1b are:

−MNN −M2Φ†Φ + Y N†N †A†ΦA+ Y AψΦ†ψ + h.c.. (A.10)

After integrating out N and Φ, we obtain

(Y AY N†)2

4M5
(ψTψA∗)(A†ψTψ) + h.c.. (A.11)
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Writing this in a form that is best for studying composite neutrinos, we have

(Y A
ff ′Y

N†)(Y A
gg′Y

N†)

4M5
(ψfmσ

2
mnψf ′nA

†
o)σ

2
op(A

∗
pψgsσ

2
stψg′t)

=
(Y A
ff ′Y

N†)(Y A
gg′Y

N†)

4M5
(ψfmσ

2
mnA

†
oψf ′n)

Tσ2
op(ψgsσ

2
stA

∗
pψg′t)

≡ hff
′,gg′

(ψTf A
†ψf ′)(ψ

T
g A

∗ψg′)

M5
, (A.12)

where

hff
′,gg′ =

1

4
(Y A
ff ′Y

N†)(Y A
gg′Y

N†) ⇒ h ∼ |Y N |2|Y A|2. (A.13)

B. Calculation of µ → eγ

In this appendix, we calculate the bounds on M given by the lepton flavor violating (LFV)

process µ→ eγ. The vertices and the kinematics of the LFV process are shown in figure 3.

Throughout the calculation, we neglect the mass of the out-going electron. We first

evaluate the amplitude of the diagram where the photon coming from the external muon.

This diagram scales as the electron mass and thus vanish in the limit of massless electron.

Explicitly the diagram gives

Mµ→γ = ūeR
(−iY ∗

L )

∫

d4k

(2π)4
i

k2 −M2

i(6p′ − 6k)
(p′ − k)2

(iYL)
i(6p′ +mµ)

(p′2 −m2
µ)

(−ie6ε)uµ

= −e|Y L|2ūeR

[
∫

d4k

(2π)4
6p′ − 6k

(k2 −M2)(p′ − k)2

] 6p′ +mµ

p′2 −m2
µ

6εuµ. (B.1)

Here M , mµ, me are the masses of Ω, µ, e, we use p′ ≡ (p − q), and εµ is the polarization

of the outgoing photon. Integrating out the loop momentum and doing the dimensional

regularization, we get the amplitude as

Mµ→γ =
−ie|Y L|2

32π2
ūeR

(

6p′ 6p
′ +mµ

p′2 −m2
µ

6ǫ
)(

2

ǫ
− γ + ln(4π) +

1

2
− lnM2

)

uµ. (B.2)

Here γ is the Euler-Mascheroni constant, ǫ ≡ 4− d and we take d→ 4 for the finite terms.

We use the condition of transverse polarization

εµq
µ = 0, εµp

µ = 0, εµp
′µ = 0. (B.3)

Then, we see that the diagram vanishes, that is, Mµ→γ = 0.

The amplitude of the diagram where the external photon is emitted by the electron

can be written as

Me→γ = ūeR
(−ie6ε) i(6p)

(p2)
(−iY ∗

L )

∫

d4k

(2π)4
i

k2 −M2

i(6p − 6k)
(p − k)2

(iYL)uµ

= −e|Y L|2ūe 6ε
6p
p2

[
∫

d4k

(2π)4
6p− 6k

(k2 −M2)(p− k)2

]

uµ. (B.4)
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γ

L L

(a)

γ

Ω Ω
p p′

(b)

Ω

L A

(c)

µ µ

γ γ

Ω Ω
q

q

k k
(k − q)

(p − k)(p′
− k) e e

A Ap p′ p p′

Figure 3: In the upper part are the vertices we use in the calculation: (a) −ieγµ (b) −ie(p+ p′)µ

(c) iY L. The lower part are the kinematics we use in the calculation. The case with the photon

going out from e is not shown, since we can obtain the result directly from the first diagram.

Integrating out the loop momentum and doing the regularization, this gives

Me→γ =
−ie|Y L|2

32π2
ūeR

6ε
( 6p
m2
µ

6p
)[

2

ǫ
− γ + ln(4π) +

1

2
− lnM2 +

1

3

(mµ

M

)2
]

uµ

=
−ie|Y L|2

32π2

[

2

ǫ
− γ + ln(4π) +

1

2
− lnM2 +

1

3

(mµ

M

)2
]

εν ūeR
γνuµR

. (B.5)

when keeping terms up to order O(m2
µ/M

2).

For the case with the photon coming out from the internal Ω (see figure 3), the

amplitude is

MΩ→γ = ūeR
(−iY ∗

L )εν

∫

d4k

(2π)4
i

(k − q)2 −M2
(−ie(2k − q)ν)

i

(k2 −M2)

i(6p− 6k)
(p− k)2

(iYL)uµ

= −e|Y L|2εν ūeR

[
∫

d4k

(2π)4
(2k − q)ν(6p− 6k)

((k − q)2 −M2)(k2 −M2)(p − k)2

]

uµ. (B.6)

Integrating out the loop momentum, taking me = 0 and using the transverse polarization

condition, eq. (B.3), we get the amplitude when keeping the terms up to O(
m2

µ

M2 )

MΩ→γ =
ie|Y L|2
32π2

[

2

ǫ
− γ + ln(4π) +

1

2
− lnM2 +

1

6

(mµ

M

)2
]

εν ūeR
γνuµR

. (B.7)

Combining the three diagrams, we have

Mµ→eγ = − ie|Y
L|2

192π2

(mµ

M

)2
ūeR

6εuµR
. (B.8)

Using me = 0 and eq. (B.3), we can write the result into the well known dipole operator

ie|Y L|2
768π2

(mµ

M2

)

ēRσµνF
µνµL. (B.9)
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µ µ µe e e

q q qq q q

Ω Ω Ω

γ , Z γ ,Z γ ,Z

A A A

Figure 4: µ− e conversion in nuclei emitted by photon and Z.

Averaging the incoming muon spin, the amplitude square becomes

< |M |2 >spin= − e2|Y L|4
2 × 1922π4

(
mµ

M
)4Tr[6peγµ(6pµ)γµ] =

α|Y L|4
962π3

(

m6
µ

M4

)

. (B.10)

This gives the decay rate

Γ(µ→ γe) =
1

32π2
< |M |2 >spin

|q|
m2
µ

∫

dΩ =
α|Y L|4
7682π4

m5
µ

M4
. (B.11)

Comparing to the total muon decay rate
G2

Fm
5
µ

192π3 , this gives the branching ratio

Br(µ→ γe) =
α|Y L|4

3072πG2
FM

4
. (B.12)

Comparing to the LFV bound today Br(µ→ eX) < 10−11 [6], we have

M > 10|Y L|TeV. (B.13)

C. Coherent muon-electron conversion

In this appendix we estimate the bounds from the LFV process of coherent muon-electron

conversion (figure 4). For a review of the coherent conversion and how it can be used to

put bounds on new physics, see [13, 14] for example.

Our goal is to find the bound on M by comparing the theoretical expression with ex-

perimental data. Here we use the general result derived in [13] for the theoretical branching

ratio. The low energy effective Hamiltonian is [13]

H = −ēÕµ+ h.c.

Õ = −
√

4πα

[

γα(fE0 − fM0γ5)
q2

m2
µ

+ iσαβ
qβ

mµ
(fM1

+ fE1γ5)

]

Aα(q) +
GF√

2
γα(a− bγ5)J

α

Jα = ūγαu+ cdd̄γ
αd (C.1)
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and the final result of the conversion rate is

wconv = 3 × 1023(w(1)
conv + w(2)

conv) sec−1,

w(1)
conv =

∣

∣

∣

∣

∣

fE0Ip −
GF√

2

m2
µ

4πZα
a(Z(2 + cd)Ip +N(1 + 2cd)In) + fM1I34

∣

∣

∣

∣

∣

2

,

w(2)
conv =

∣

∣

∣

∣

∣

fM0Ip −
GF√

2

m2
µ

4πZα
b(Z(2 + cd)Ip +N(1 + 2cd)In) + fE1I34

∣

∣

∣

∣

∣

2

, (C.2)

where

Ip = −(Ip1 + Ip2 ), In = −(In1 + In2 ), I34 = I3 + I4. (C.3)

Here q represents the photon momentum, and the terms containing Aα in the Hamiltonian

describe the transition that is mediated by a photon. The I’s in the last part are coefficients

for various elements including the proton-neutron distribution function and the EM field

inside the nucleus. They have been calculated in [14] for various materials.

We are ready to use these results in the composite model. The rate of µN → eN arising

from the preon sector is given by the six diagrams in figure 4. Doing the same calculation as

in appendix B but allowing the out-going photon to be off-shell, the coefficients in eq. (C.1)

are of order

fE0 ∼ −fM0 ∼ fM1
∼ −fE1

∼ a ∼ b ∼ |Y L|2
768π2

m2
µ

M2
, cd ∼ 1. (C.4)

Given these coefficients and the I’s calculated in [13, 14] (which are of order

10−1 GeV− 1

2 ), the conversion rate with target 48
22T i can be estimated as:

wconv ∼ 1014|Y L|4
(mµ

M

)4
sec−1 . (C.5)

Comparing to the experimental total muon capture rate w(T i)cap = 2.6 × 106 sec−1 [15],

this gives the branching ratio of the conversion as

Br(µ→ e, T i) ≡ wconv

wcap
= 108|Y L|4

(mµ

M

)4
. (C.6)

Comparing to the experimental limit Br(µ→ e) < 1.7 × 10−12 [7], this gives

M > 10|Y L|TeV. (C.7)
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